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In [1J, Eq. (3.2) in Theorem 3.1 is incorrect. This equation was not used
in the application in [2, Theorem 4.2]. Using the notation of [IJ, let

J(k, cr, M):= {I(f) u range(f):jE G(k, Ct, M)}.

Then Eq. (3.2) and its proof become valid for J(k, Ct, M) in place of l(k, c.:, M).
The rest of the theorem holds as stated for I(k, iX, M). The following shows
the error in (3.2). We have not tried for a best possible result here.

PROPOSITION. r,,(/(2, Ct, M» > I for any Ct > 0 and M > O.

Proof. Letj(ei8):= HI -- cos 0), 0 ~ 0 < 27T. Then/is a C'" function
from the unit circle 8 1 onto [0, I]. Given M and c.: > 0, there is some 1> > 0
such that the function fl: =--+ <8j(=), 0) from 8 1 into jR2 belongs to
G(2, Ct, MI2). Then /(ft) is empty. Given any finite set Fe ]0, 8[ and E > 0,
there is a Coo real function g on [0, 8] such that g ~ 0, g > 0 on F, g = 0
outside P, and glnl(O) = glnl(1)) = °for all n. For a constant y > 0 and any
Z E Sllet

h(z) ;= <oj(z), yg(3j(z»),

:= <8/(z),0),

Imz ~ 0;

Imz < O.

Then for y small enough, h E G(2, a, M). The set of x coordinates of points
inI(h) includes Fand isinduded inF'o Letting € ~ 0, the h closure of1(2, Ct, M)
includes the collection of all finite subsets of ]0, S[. Thus for any E > 0,
N(I(2, CY, M), E) ~ 2'N2~)-1. Again let E ~ O. Hence r,,(I(2, Ct, M)) ~ 1.

Q.E.D.
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Note added in proof. On p. 234, line 9, replace 2k by 3k ; p. 235, line 3, Tz by Jz ; line 7,
2.1/ 2 by .1/2; line 10 up, -Yk by Yk.
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